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Abstract: Euler developed the theory of continued fractions in the 1730’s, driven in part by 

computational interests. It is perhaps a surprise that the association of a given series with a 

continued fraction first received full development in the case of the divergent series. This 

connection was born during Euler’s correspondence with Nicholas Bernoulli from 1742 to 1745. 

While he had already used divergent series to find values of convergent numerical series, in his 

letters with Bernoulli his concepts and practices are exposed, if not developed. In this paper 

author try to establish transformation formulas using hyper geometric functions.  In order to 

derive these transformations, two well-known methods are used i.e., the q-series and q-continued 

factions. Main objective is to establish transformation formulas using hyper geometric functions 

with the help of known transformations formulas in hyper geometric functions. The Bailey’s 

transform is obtained from a suitably modified G terminating very well poised summation 

theorem and term wise transformation. It is been interpreted as a matrix inversion result of two 

infinite, lower triangular matrixes. This provides a higher dimensional generalization of 

Andrew’s matrix inversion formulation of Bailey’s transformation. 
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I. Continued Fraction 

From the early age of mathematics Continued fractions have been playing a very important 

role in number theory and classical analysis from the time of Euler and Gauss. Generalized 
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hyper geometric series, both q-series and q-fractions, have been a very significant tool in the 

derivation of continued fraction representations. 

 

II. Bailey transformation  

In 1951 and 1952, L. J. Slater derived one hundred and thirty identities of Rogers-Ramanujan 

type with the help of Bailey transformation formula. 
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Provided that Re(b+c-a/2)<1. 
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Let  be the q-Pochhammer symbol, let  be an indeterminate, and let the lower triangular 

matrices  and  be defined as 

 

 

and 

 

 

Then F and G are matrix inverses. 

III. Applications 

 

The theory of continued fractions has applications in cryptographic problems and in solution 

methods for Diophantine equations. We will first examine the basic properties of continued 

fractions such as convergents and approximations to real numbers. Then we will discuss a 

computationally efficient attack on the RSA cryptosystem (Wiener’s attack) based on continued 

fractions.  
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